skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bijlani, Swati"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post‐consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungusAspergillus nidulans. As a proof of principle, we have engineered strains ofA. nidulansto synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled. 
    more » « less